Write your name here Surname	0	ther names	
Pearson Edexcel International Advanced Level	Centre Number		Candidate Number
Chemistry)
Advanced Subsidiar Unit 1: Core Principle	ry	stry	
Advanced Subsidia	ry es of Chemis	Ī	Paper Reference WCH01/01

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- Show all your working in calculations, include units where appropriate.

Turn over ▶

P50750A

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

SECTION A

Answer ALL the guestions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \bowtie . If you change your mind, put a line through the box \bowtie and then mark your new answer with a cross \boxtimes .

1 Crude oil is separated by fractional distillation in a fractionating column.

A compound obtained from higher up the column has a

(1)

- A higher boiling temperature and higher density.
- **B** higher boiling temperature and lower density.
- ☑ C lower boiling temperature and higher density.
- D lower boiling temperature and lower density.

(Total for Question 1 = 1 mark)

2 A hydrocarbon contains, by mass, 80% carbon and 20% hydrogen.

The **molecular** formula for the hydrocarbon is

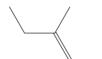
(1)

- A CH₃
- B C₂H₅
- \square **C** C_2H_6
- \square **D** C_4H_{10}

(Total for Question 2 = 1 mark)

The number of alkene isomers with the molecular formula C₄H₈ is

(1)


- **A** 2
- \times B
- **C** 4
- **D** 5

(Total for Question 3 = 1 mark)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

4 What is the systematic name of the compound shown below?

(1)

- ☑ A E-3-methylpent-2-ene
- **■ B** *E*-3-methylpent-3-ene
- ☑ C Z-3-methylpent-2-ene
- ☑ D Z-3-methylpent-3-ene

(Total for Question 4 = 1 mark)

5 Propene gas is shaken with bromine water. The **main** product is

(1)

- ☑ A 1,2-dibromopropane
- B 1-bromopropan-2-ol
- **D** propane-1,2-diol

(Total for Question 5 = 1 mark)

6 The ionic equation for the reaction between copper(II) oxide and sulfuric acid is

(1)

$$\square$$
 A $2H^{+}(aq) + SO_{4}^{2-}(aq) + CuO(s) \rightarrow H_{2}O(l) + CuSO_{4}(s)$

■ **B**
$$2H^{+}(aq) + SO_{4}^{2-}(aq) + CuO(s) \rightarrow H_{2}O(l) + Cu^{2+}(aq) + SO_{4}^{2-}(aq)$$

$$\square$$
 C $2H^+(aq) + CuO(s) \rightarrow H_2O(l) + Cu^{2+}(aq)$

$$\square$$
 D 2H⁺(aq) + O²⁻(s) \rightarrow H₂O(l)

(Total for Question 6 = 1 mark)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

7 How many neutrons are present in 1.0 g of helium?

[Avogadro constant = $6.0 \times 10^{23} \text{ mol}^{-1}$; molar mass of helium = 4.0 g mol^{-1}]

(1)

- \triangle **A** 3.0 × 10²³
- **B** 1.5×10^{23}
- 1.0×10^{23}
- \square **D** 0.5×10^{23}

(Total for Question 7 = 1 mark)

8 Sodium sulfate is formed when sulfuric acid reacts with sodium chloride under suitable conditions.

$$H_2SO_4 + 2NaCl \rightarrow Na_2SO_4 + 2HCl$$

[Molar mass/g mol⁻¹:

$$H_2SO_4 = 98.1$$

$$NaCl = 58.5$$

$$Na_2SO_4 = 142.1$$

$$HCl = 36.5$$

The atom economy by mass for the formation of sodium sulfate is

(1)

- **■ B** 66%
- **◯ C** 80%
- □ 91%

(Total for Question 8 = 1 mark)

9 The nitrogen dioxide content of air on a particular day was 0.150 ppm **by mass**. The density of the air was $1.225 \, \text{kg m}^{-3}$.

What was the mass of nitrogen dioxide in 1 m³ of air on that day?

(1)

- \triangle **A** 1.83 × 10⁻⁷ kg
- **B** $1.83 \times 10^{-10} \text{kg}$
- $1.84 \times 10^{-7} \text{ kg}$
- \square **D** 1.84 × 10⁻¹⁰ kg

(Total for Question 9 = 1 mark)

NOT WRITE IN THIS AREA

WRITE IN THIS AREA

10 100 cm³ of ethane, C₂H₆, is completely burned in 400 cm³ of oxygen.

$$C_2H_6(g) + 3\frac{1}{2}O_2(g) \rightarrow 2CO_2(g) + 3H_2O(I)$$

What is the final volume of the gas mixture, in cm³, if all volumes are measured under standard conditions of 298 K and 100 kPa?

(1)

- **■ B** 250
- **☑ C** 500
- □ 550

(Total for Question 10 = 1 mark)

11 Sodium reacts with water to produce hydrogen.

Na(s) +
$$H_2O(I) \rightarrow NaOH(aq) + \frac{1}{2}H_2(g)$$

What volume of hydrogen, in **cm**³, under standard conditions, is formed when 2.3 g of sodium reacts with excess water?

[Molar volume of a gas = $24 \text{ dm}^3 \text{ mol}^{-1}$, molar mass of sodium = 23.0 g mol^{-1}]

(1)

- **⋈ A** 1.2
- **B** 2.4
- **◯** C 1200
- **D** 2400

(Total for Question 11 = 1 mark)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

12 Which of these compounds contains the greatest percentage by mass of nitrogen?

	Formula	Molar mass / g mol ⁻¹
⊠ A	(NH ₂) ₂ CO	60
⊠ B	NH ₄ NO ₃	80
⊠ C	NH ₄ Cl	53.5
⊠ D	NH₄F	37

(1)

(Total for Question 12 = 1 mark)

13 The melting temperatures, in kelvin, of nine successive elements in the Periodic Table are given.

The numbers of the elements are not their atomic numbers.

Element	1	2	3	4	5	6	7	8	9
<i>T</i> _m / K	3950	63	55	53	25	371	922	933	1683

Which element is a noble gas?

(1)

- **■ B** 3

(Total for Question 13 = 1 mark)

AREA

NOT WRITE IN THIS

THIS AREA

WRITEIN

SEE

WRITEIN

14 To calculate the heat energy change, Q, for a reaction in aqueous solution, the equation used is

 $Q = mc\Delta T$

It is usual to take the value of c, the specific heat capacity of the solution, as the specific heat capacity of water, 4.18 J g^{-1} °C⁻¹, and the value of m, the mass of solution, as the volume of solution.

Which statement about these values is true?

(1)

- A Both these are exact values for the solution.
- **B** The value for c is exact but the value of m is approximate.
- ☑ C The value for c is approximate but the value of m is exact.
- **D** Both these are approximate values for the solution.

(Total for Question 14 = 1 mark)

15 Which diagram best represents the shapes of the electron density contours for the ions in sodium fluoride?

(1)

⋈ A (c

X B

⊠ C

⊠ D

(Total for Question 15 = 1 mark)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

16 Ammonia gas is oxidised in the presence of a platinum catalyst.

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$$

Substance	Standard enthalpy change of formation / kJ mol ⁻¹
NH ₃ (g)	-46.1
NO(g)	+90.2
H ₂ O(g)	-241.8

From the data in the table, what is the standard enthalpy change of the reaction, in kJ mol⁻¹?

(1)

- **■ B** +105.5
- **C** -105.5
- **■ D** −905.6

(Total for Question 16 = 1 mark)

17 In which reaction would the standard enthalpy change of reaction be closest to the value calculated only using mean bond energy data?

(1)

- \square A $CH_3CH_3(g) + Cl_2(g) \rightarrow CH_3CH_2Cl(g) + HCl(g)$
- \square **B** $CH_3CH_2CH_3(g) + Cl_2(g) \rightarrow CH_3CH_2Cl(I) + HCl(g)$
- \square **C** $CH_3CH_2CH_2CH_3(g) + Cl_2(g) \rightarrow CH_3CH_2CH_2Cl_2(l) + HCl_2(g)$

(Total for Question 17 = 1 mark)

DO NOT WRITE IN THIS AREA

	would be the temperature fall when 0.02 mol of ammonium nitrate is dissolved
in 10 c	m ³ of water, under the same conditions?
⊠ A	1.0 K
ВВ	2.0 K
⊠ C	5.0 K
⊠ D	10.0 K
	(Total for Question 18 = 1 mar
) Which	of the following enthalpy changes cannot be determined directly by experiment
	nthalpy change of
THE CI	(
⊠ A	combustion of carbon.
	combustion of ethane.
⊠ C	formation of water.
⊠ D	formation of ethane.
	(Total for Question 19 = 1 mar
) In whi	ch pair do both molecules contain a triple bond?
, 111 AA111	(
⊠ A	CO and N ₂
	CO and O ₂
⊠ C	CO ₂ and N ₂
⊠ D	CO ₂ and O ₂
	(Total for Question 20 = 1 mar

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

- 21 This question is about the preparation of ammonium iron(III) sulfate-12-water, $NH_4Fe(SO_4)_2.12H_2O$. It is a double salt containing ammonium ions, iron(III) ions, sulfate ions, and water of crystallisation.
 - (a) The first step of a preparation is to make iron(III) sulfate solution. 0.050 mol of iron(II) sulfate-7-water is dissolved in dilute sulfuric acid. This solution is heated to boiling and concentrated nitric acid is added in portions of about 1 cm³, until the reaction is complete.

$$6FeSO_4(aq) + 2HNO_3(aq) + 3H_2SO_4(aq) \rightarrow 3Fe_2(SO_4)_3(aq) + 2NO(q) + 4H_2O(l)$$

- (i) Write the ionic equation for this reaction. State symbols are not required.
 - (2)
- (ii) Calculate the mass of 1 mol of iron(II) sulfate-7-water, FeSO₄.7H₂O.

$$[A_r ext{ Fe} = 55.8, S = 32.1, O = 16, H = 1]$$

(1)

(iii) Calculate the mass of 0.050 mol of iron(II) sulfate-7-water.

- (1)
- (iv) Show that 12.5 cm³ of 2.0 mol dm⁻³ sulfuric acid is the minimum amount of sulfuric acid needed to react with 0.050 mol of iron(II) sulfate-7-water.

(2)

(v) Name the piece of apparatus which should be used to add portions of about 1 cm³ of concentrated nitric acid while the mixture is boiling.

(1)

(vi) After each addition of the nitric acid, a drop of the mixture is added to potassium hexacyanoferrate(III) solution. If iron(II) ions are present, the following reaction occurs.

$$2K_3[Fe(CN)_6](aq) + 3Fe^{2+}(aq) \rightarrow Fe_3[Fe(CN)_6]_2(s) + 6K^+(aq)$$

State the type of reaction that occurs between iron(II) ions and potassium hexacyanoferrate(III).

(1)

- (b) The second step of this preparation is to make ammonium sulfate solution by neutralising 12.5 cm³ of dilute sulfuric acid.
 - (i) Write the equation, including state symbols, for the formation of ammonium sulfate by neutralising dilute sulfuric acid with ammonia solution.

(2)

(ii) Calculate the minimum volume of 2.0 mol dm⁻³ ammonia solution needed to react with 12.5 cm³ of 2.0 mol dm⁻³ sulfuric acid.

(1)

DO NOT WRITE IN THIS AREA

(iii) In practice, it is difficult to ensure the concentration of ammonia solution is exactly 2.0 mol dm ⁻³ , so a slight excess is usually needed. Describe a test and its result that could be used to show that excess ammonia solution has been added.	
been added.	(2)
(c) The next step of the reaction is to mix the solutions of iron(III) sulfate and ammonium sulfate. To obtain crystals, the solution is concentrated by boiling off some of the water.	
(i) How would you know if sufficient water has been removed?	(1)
	(1)
(ii) State the best way to ensure that large crystals form from the concentrated solution.	
concentrated solution.	(1)
(iii) When the crystals have formed, the mixture is filtered.	
State the two practical steps then needed to obtain pure, dry crystals.	(2)
	(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(d) The process gives a 40% yield of ammonium iron(III) sulfate-12-water. Calculate the mass of crystals formed from the initial 0.050 moles of iron(II) sulfate-7-water.

1 mol of iron(II) sulfate forms 1 mol of ammonium iron(III) sulfate.

[Molar mass ammonium iron(III) sulfate-12-water = 482 g mol⁻¹]

(2)

(Total for Question 21 = 19 marks)

22 2-methylpropane, previously known as isobutane, is a gas under standard conditions.

2-methylpropane

(a) (i) Give the empirical formula for 2-methylpropane.

(1)

(ii) Explain why it is **not** essential to give the prefix '2-' in the name 2-methylpropane.

(1)

- (b) 2-methylpropane is used in fuels for portable camping stoves and as a refrigerant.
 - (i) Write the chemical equation for the complete combustion of 2-methylpropane. State symbols are not required.

(1)

(ii) Suggest the safety hazard associated with its use as a refrigerant.

(1)

(ii) Suggest the safety hazara associated with its ase as a reinigerant.

NOT WRITE IN THIS AREA

(c)	2-methylpropane reacts with chlorine, in the presence of ultraviolet radiation, to
	form 2-chloro-2-methylpropane, molecular formula C ₄ H ₉ Cl, and other products.

(i) State the type and mechanism of this reaction.

(2)

(ii) Write an equation to show the initiation step of this reaction, using curly half-arrows.

(1)

(iii) Write the **two** equations to show the propagation steps for this reaction to form 2-chloro-2-methylpropane. Use molecular formulae.

Curly half-arrows are not required.

(2)

- (d) One minor product of this reaction is 2,2,3,3-tetramethylbutane.
 - (i) Give the **structural** formula of 2,2,3,3-tetramethylbutane.

(1)

(ii) Name the type of step in the mechanism that produces 2,2,3,3-tetramethylbutane.

(1)

DO NOT WRITE IN THIS AREA

(iii) Explain how 2,2,3,3-tetramethylbutane forms as one of the products in this rea	action. (1)
(e) 2-methylpropane is used to make 2-methylpropene.(i) What type of reaction occurs?	(1)
*(ii) 2-methylpropene reacts with hydrogen bromide. Give the mechanism for this reaction forming the major product. Use appropriate curly arrows and show the relevant dipole and lone pair.	(4)

DO NOT WRITE IN THIS AREA

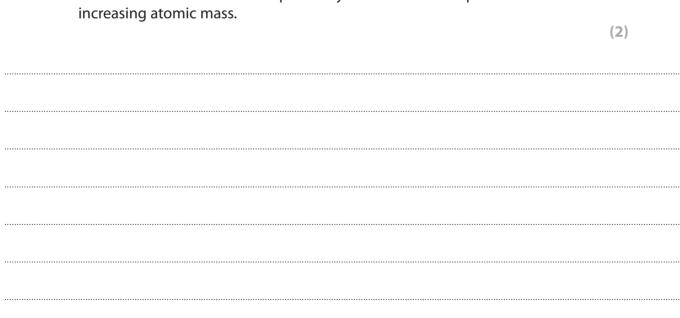
	(Total for Question 22 = 21 m	narks)
	(ii) Suggest one advantage of using a high octane fuel.	(1)
	(i) What is the structural feature of isooctane which gives it a higher octane rating than heptane?	(1)
(f)	2,2,4-trimethylpentane is also known as isooctane. It was first added to fuel for internal combustion engines in 1926. From this, the octane rating of fuel was devised by assigning a value of 100 to isooctane and a value of 0 to heptane.	
	Dimer	
	2,2,4-trimethylpentane	(2)
	2,2,4-trimethylpentane. Draw the skeletal formula for 2,2,4-trimethylpentane. Use this to draw the skeletal structure of one of the dimers formed from 2-methylpropene.	(2)
	(iii) In the presence of a suitable catalyst, 2-methylpropene forms a mixture of dimers. Two of these dimers react with hydrogen to form	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

23 This question is about the elements chlorine, argon and potassium.


Data for atomic numbers (Z), relative atomic masses (A_r), first ionisation energies (E_{m1}), and standard enthalpy changes of atomisation (ΔH_{at}^{Θ}) for these elements are given in the table.

Element	Z	A _r	$E_{\rm m1}/~{\rm kJ~mol}^{-1}$	$\Delta H_{\rm at}^{\Theta}$ / kJ mol ⁻¹
Chlorine	17	35.5	1251	121.7
Argon	18	39.9	1521	0
Potassium	19	39.1	419	89.2

(a) (i)	Give two reasons why the standard enthalpy change of atomisation of arg	on is zero
		(2)

*(ii) In the Periodic Table, elements are placed in order of increasing atomic number.

Use the data in the table to explain why elements are **not** placed in order of increasing atomic mass.

DO NOT WRITE IN THIS AREA

(i)	State the numbers of subatomic particles in the nucleus of each isotope. Use these to explain what is meant by the term isotope.	
	ose these to explain what is meant by the term isotope.	(2)
(ii)	A sample of chlorine has a relative atomic mass of 35.453.	
	Calculate the percentage abundance of each of the isotopes of chlorine in this	sample
	Give your answer to four significant figures.	(2)
(c) (i)	Give the equation for the first ionisation energy of chlorine. Include state sym	bols.
		(1)
*(ii)	Explain why argon has a higher first ionisation energy than chlorine.	(2)

DO NOT WRITE IN THIS AREA

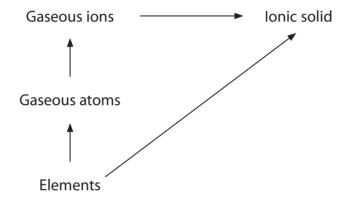
(iii)	Draw the shape of the outermost occupied orbital in an argon atom and in a potassium atom. Label each orbital as s, p or d.	(2)
	Argon Potassium	
(d) Po	tassium burns in chlorine to form potassium chloride.	
(i)	Draw a dot and cross diagram for potassium chloride showing all electrons and charges.	
		(2)
(ii)	State how potassium ions, chloride ions and argon atoms are similar.	
		(1)
(e) (i)	Name the law which is applied in a Born-Haber cycle.	
	State the law.	(1)
ame		
aw		

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(ii) The following data can be used in the Born-Haber cycle for potassium chloride.

Lattice energy of potassium chloride = -711 kJ mol^{-1}


Standard enthalpy change of formation of potassium chloride = -436.7 kJ mol⁻¹

Standard enthalpy change of atomisation of potassium = $+89.2 \text{ kJ mol}^{-1}$

Standard enthalpy change of atomisation of chlorine ($\frac{1}{2}Cl_2$) = +121.7 kJ mol⁻¹

First ionisation energy of potassium = $+419 \text{ kJ mol}^{-1}$

The following diagram summarises the Born-Haber cycle for the formation of an ionic solid such as potassium chloride from its elements.

Label the arrows with the appropriate **values** and hence calculate the electron affinity of chlorine.

(3)

(Total for Question 23 = 20 marks)

TOTAL FOR SECTION B = 60 MARKS
TOTAL FOR PAPER = 80 MARKS

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

The Periodic Table of Elements

				,			
0 (8)	(10) 4.0 He hetium 2	20.2 Ne neon 10	39.9 Ar argon 18	83.8 Kr krypton 36	Xe xenon 54	[222] Rn radon 86	ted
^	(17)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9 Br bromine 35	126.9 I iodine 53	[210] At astatine 85	oeen repoi
9	(16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0 Se selenium 34	127.6 Te tellurium 52	[209] Po polonium 84	116 have t
Ω	(15)	14.0 N nitrogen 7	31.0 P phosphorus 15	74.9 As arsenic 33	Sb antimony 51	209.0 Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated
4	(14)	12.0 C carbon 6	28.1 Si silicon	72.6 Ge germanium 32	118.7 Sn tin	207.2 Pb lead 82	atomic nur but not fu
m	(13)	10.8 B boron 5	27.0 Al aluminium 13		114.8 In indium 49	204.4 Tl thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated
			(12)	65.4 Zn zinc 30	112.4 Cd cadmium 48	200.6 Hg mercury 80	
			(11)	63.5 Cu copper 29	107.9 Ag silver 47	197.0 Au gold 79	Rg n roentgenium 111
			(10)	58.7 Ni nickel 28	106.4 Pd palladium	195.1 Pt platinum 78	Ds larmstadtium r 110
			(6)	58.9 Co cobalt 27	102.9 Rh rhodium 45	192.2 Ir irridium	[268] [271]
	1.0 H hydrogen		(8)	55.8 Fe iron 26	Ru Ru ruthenium 44	190.2 Os osmium 76	[277] Hs hassium r 108
			6	54.9 Mn nanganese 25	[98] Tc technetium	186.2 Re rhenium 75	[264] Bh ohrium 107
		nass ool umber	9	52.0 54.9 Cr Mn chromium manganese 24 25	95.9 [98] Mo Tc molybdenum technetium 42 43	183.8 W tungsten 74	Sg n seaborgium b
	Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9 V vanadium 23	92.9 Nb niobium	180.9 Ta tantalum 73	[262] Db dubnium s 105
		relativ ato l	(4)	47.9 Ti titanium 22	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[261] Rf rutherfordium 104
			(3)	Sc r scandium t	88.9 Y yttrium 39	138.9 La* lanthanum 57	[227] Ac* actinium 89
2	(2)	9.0 Be beryllium 4	24.3 Mg magnesium 12	40.1 Ca calcium 20	87.6 Sr strontium 38	137.3 Ba barium 1 56	[226] Ra radium 88
-	(1)	6.9 Li lithium 3	23.0 Na sodium 11	39.1 K potassium 19	85.5 Rb rubidium 37	132.9 Cs caesium 55	[223] Fr francium 87

* Lanthanide series

* Actinide series

140	141	144	[147]	150	152	157	159	163	165	167	169	173	175
Ce	P	PX	Pm	Sm	Eu	В	4	δ	운	Ъ	Tm	Ϋ́	ב
cerinm	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetiun
58	29	60	61	62	63	64	65	99	67	68	69	70	71
232	232 [231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[326]	[254]	[257]
드	Pa	_	å	Pu	Αm	Ę	쓙	უ	ES	F	Þ₩	ž	۲
thorium	protactinium	uranium	neptunium	plutonium	americium	aurium	berkelium		einsteinium	fermium	mendelevium	nobelium	lawrenciu
8	91	92	93	8	92	96	26	86	66	100	101	102	103

