

Mark Scheme (Results)

Summer 2024

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2024
Question Paper Log Number P75822A
Publications Code 4CH1_2C_2406_MS
All the material in this publication is copyright
© Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

	uesti		Answer	Notes	Marks
1	(a)	(i)	sulfur	ALLOW S	1
		(ii)	beryllium	ALLOW Be	1
		(iii)	boron	ALLOW B	1
		(iv)	2,8,4 / 2.8.4	ACCEPT diagram showing electron configuration	1
	(b)		An explanation that links the following three points		3
			M1 the outer shell is further from the nucleus in sodium/sodium has more shells/sodium has a larger atomic radius ORA	ALLOW a sodium atom is larger than a lithium atom	
				ALLOW Li 2,1 Na 2,8,1	
			M2 there is less attraction to the nucleus for the outer electron/outer shell in sodium ORA	ALLOW there is more shielding in sodium ORA	
			M3 so the (outer) electron is more easily lost ORA	IGNORE electrons (plural) in M1 and M2 but do not allow electrons in M3	
					Total 7

Question number	Answer	Notes	Marks
2 (a) (i)	M1 oxygen	ALLOW air /O ₂	2
	M2 water	ALLOW moisture / water vapour /H ₂ O	
(ii)	painting/oiling/coating with plastic/galvanising /electroplating /waxing /greasing	REJECT sacrificial protection	1
(b)	An explanation that links the following two points		2
	M1 a more reactive metal is connected to/coated on the iron OWTTE	ACCEPT a suitable metal, e.g. zinc/magnesium /aluminium	
		IGNORE an element	
	M2 the more reactive metal will react /oxidise /corrode instead of iron	REJECT a more reactive metal rusts instead of iron	
			Total 5

Ques		Answer	Notes	Marks
3 (a)		M1 (A) refinery gases		2
		M2 (F) bitumen		
(b)	(i)	aircraft fuel		1
	(ii)	A description that refers to three of the following points		3
		M1 crude oil is heated/vaporised	IGNORE evaporated	
		M2 (the vapour) passes into/rises up the (fractionating) column / chamber OWTTE		
		M3 the kerosene /the fraction is tapped off/removed at its boiling point range /condenses and removed	ALLOW kerosene/the fraction is removed at the 3 rd or 4th level	
(c)	(i)	M1 silica/alumina	ALLOW silicon dioxide/SiO ₂ /aluminium oxide /Al ₂ O ₃ /zeolites /aluminosilicates	2
		M2 any value or range between 600 and 700 (°C) inclusive		
	(ii)	An explanation that links three of the following points		3
		M1 there is a surplus supply of / less demand for larger fractions /molecules/hydrocarbons		
		OR		
		there is not enough supply / greater demand for smaller fractions/molecules /hydrocarbons		
		M2 alkenes are produced which are needed to make polymers	ALLOW plastics / to make ethanol	
		M3 smaller fractions /alkanes /molecules /hydrocarbons are needed for petrol	ALLOW gasoline / fuel for cars	
				Total 11

Question number	Answer	Notes	Marks
4 (a) (i)	 M1 all points plotted correctly to the nearest + or - half a small square for KNO₃ M2 all points plotted correctly to the nearest + or - half a small square for NaNO₃ 		2
(ii)	M1 smooth curve of best fit for KNO ₃ M2 smooth curve of best fit for NaNO ₃	If KNO ₃ and NaNO ₃ are not labelled or labelled incorrectly lose 1 mark if curves are correct but allow ECF for (c) and (d) if the curves are the wrong way round	2
(b)	temperature where their lines cross (expected value approximately 68 °C)		1
(c)	M1 mass at 30 °C read from graph (expected value approximately 24 g) M2 4 x answer to M1 (expected value approximately 96 g)		2
(d)	 M1 mass at 50 °C read from graph (expected value approximately 21 g) M2 mass at 20 °C read from graph (expected value approximately 8 g) M3 M1 – M2 (expected value approximately 13 g) 	Need to show working on the graph for M1 and M2 to score but allow M3 for M1 - M2	3
			Total 10

Question number	Answer	Notes	Marks
5 (a)	Any two from		2
	M1 same general formula		
	M2 same functional group		
	M3 similar chemical properties /characteristics	IGNORE same chemical properties	
	M4 trend in physical properties /characteristics	accept any trend in specified physical property	
	M5 consecutive members differ by a CH ₂ group	property	
(b) (i)	H ₂ SO ₄		1
(ii)	M1 (from) orange	must be in the correct order	2
	M2 (to) green	0.00	
(iii)	M1 (methanol) H I H - C - O - H I H	Penalise once only if O – H bond not shown and both structures correct	2
	M2 (methanoic acid) O		
	II H – C – O – H		
(c)	CH₃OH + HCOOH → HCOOCH₃ + H₂O	ALLOW multiples	1
		ALLOW CH₃OOCH	
		IGNORE state symbols even if incorrect	
		REJECT CH ₃ COOH and C ₂ H ₄ O ₂	
(d) (i)	A (butyl ethanoate)		1
	B butyl methanoate is not the correct name of the ester CH ₃ COOCH ₂ CH ₂ CH ₂ CH ₃ C ethyl butanoate is not the correct name of the ester CH ₃ COOCH ₂ CH ₂ CH ₂ CH ₃ D methyl butanoate is not the correct name of the ester CH ₃ COOCH ₂ CH ₂ CH ₂ CH ₃		
(ii)	C ₆ H ₁₂ O ₂	ALLOW symbols in any order	1
			Total 10

Question number		Answer	Notes	Marks
6 (a)		A description that refers to the following three points		3
		M1 filter (the mixture)		
		M2 wash (the precipitate/solid/lead(II) bromide with distilled water)		
		M3 suitable drying method	e.g. dry with filter paper /leave to dry/dry in a desiccator/dry in an oven	
			REJECT M3 if they attempt to crystallise the filtrate	
			If any attempt to evaporate the solution allow MAX 1	
(b)	(i)	2(.0) x 0.025 = 0.05(0) (mol)	ACCEPT 25 ÷ 1000 = 0.025 0.05 ÷ 0.025 = 2	
		OR		
		$\frac{2(.0) \times 25}{1000} = 0.05(0) \text{ (mol)}$	All working must be shown to gain full marks	
((ii)	M1 $(n \text{ PbBr}_2) = 0.05(0) \div 2 = 0.025$	ALLOW 2:1 = 0.05:0.025	;
		$M2\ 0.025 \times 367 = 9.175 \ (g)$	ACCEPT 9.18/9.2/9 (g)	
		OR		
		M1 0.05 x 367 = 18.35 (g)		
		M2 $18.35 \div 2 = 9.175 (g)$	ACCEPT 9.18/9.2/9 (g)	
			All working must be shown to gain full marks	
(c)	(i)	An explanation that links the following three points		
		M1 when solid the ions are in fixed positions/in a lattice		
		M2 so there are no ions/electrons/charged particles free to move		
		M3 (when molten) the ions are free to move so can	IGNORE carry charge	
		conduct electricity/carry a current	REJECT solution for M3	
			REJECT electrons moving /delocalised electrons for M3	

(ii)	An explanation that links the following two points		2
	M1 graphite	IGNORE carbon	
		ALLOW platinum	
	M2 resistance to high temperature /has a high melting point	ALLOW conducts electricity / doesn't react with product /is inert	
		M2 dependent on graphite /carbon /a transition metal	
(iii)	$Pb^{2+} + 2e^{(-)} \rightarrow Pb$	ACCEPT multiples	1
		IGNORE state symbols even if incorrect	
(d) (i)	brown vapour/gas/fumes	ALLOW red-brown vapour/gas/fumes	1
		REJECT orange/orange- brown/red alone	
(ii)	bromide (ions)/Br - loses electrons	ALLOW electrons are lost	1
		REJECT bromine loses electrons	
			Total 14

Question number	Answer	Notes	Marks
7 (a)	M1 (electrostatic) attraction between nuclei (of both atoms)	nuclei must be plural	2
	M2 and a shared/bonding pair of electrons		
	OR		
	M1 (electrostatic) attraction between a shared/bonding pair of electrons		
	M2 and nuclei (of both atoms)	nuclei must be plural	
(b)	An explanation that links the following four points		4
	M1 (in the organic solvent) litmus paper stays blue/has no change	No M1 or M2 if litmus paper turns red	
	M2 because there are no (H ⁺) ions/ the solution is not acidic /does not dissociate in an organic solvent		
	M3 (in the aqueous solution) litmus paper turns red	REJECT M3 if litmus is bleached or turns white	
	M4 because H ⁺ ions are formed/hydrochloric acid forms	M4 dep on litmus turning red initially	
(c) (i)		correct answer – 184 with or without working scores 3	3
	M1 reactants bond energy = 436 + 242 OR 678 (kJ)	(+)184 scores 2	
	M2 products bond energy = 2 x 431 OR 862 (kJ)		
	M3 – 184 (kJ/mol)	ALLOW ecf on incorrect values on M1 and/or M2	
(ii)	M1 show correct positions of horizontal lines and activation energy hump	ALLOW ecf if positive answer in (i)	4
		M3 REJECT arrow	
	$M2$ correct labelling of (reactants) H_2 + Cl_2 and (products) 2HCl	pointing down	
	M3 vertical line in correct position labelled ΔH	ACCEPT arrow pointing down or double headed arrow	
		REJECT arrow pointing up	

M4 vertical line in correct position labelled Ea or activation energy	ACCEPT arrow pointing up or double headed arrow	
	REJECT arrow pointing down	
	politting down	Tota

