

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/21
Paper 2			May/June 2011
			1 hour 15 minutes
Candidates ans	swer on the Question Paper.		
No Additional M	laterials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

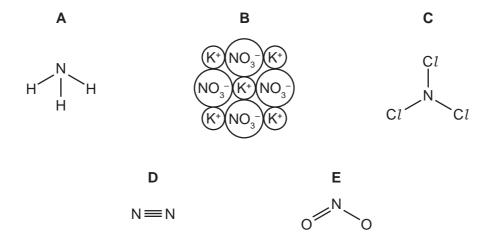
Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	


This document consists of 15 printed pages and 1 blank page.

IB11 06_0620_21/4RP © UCLES 2011

[Turn over

1 The structures of some substances containing nitrogen are shown below.

Answer the following questions by choosing from the structures **A**, **B**, **C**, **D** or **E**. You can use each structure once, more than once or not at all.

Which structure represents

(a) an acidic oxide,
(b) an ionic giant structure,
(c) a gas which turns moist litmus paper blue,
(d) a compound which is formed under conditions of high temperature and pressure in car engines,
(e) a molecule containing halogen atoms,
(f) a salt?

[Total: 6]

2	Vanadium	has two	isotopes.

$_{23}^{50}V$	51 γ
₂₃ V	⁵¹ ₂₃ V

(a)	Define the term isotope.
	[1]

(b) An atom contains protons, electrons and neutrons. Complete the table to show the number of protons, electrons and neutrons in these two isotopes of vanadium.

isotope	number of protons	number of electrons	number of neutrons
⁵⁰ ₂₃ V	23	23	
⁵¹ ₂₃ V			28

[3]

(c) Complete these sentences using words from the list.

cancer	extra	industry	influenza	medicine	non
Two types of	isotopes are	radioactive ar	nd	radioactive.	Radioactive
isotopes are u	sed in	for tro	eating patients	with	[3]

(d) Vanadium is a transition element. Which two of these statements about vanadium are correct? Tick two boxes.

vanadium is a non-metal	
vanadium conducts electricity	
vanadium has a low melting point	
vanadium is less dense than sodium	
compounds of vanadium are coloured	

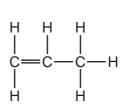
[2]

[Total: 9]

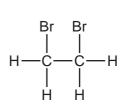
Wa	er is present in the atmosphere, the seas and in ice and snow.	
(a)	Describe a chemical test for water.	
	test	
	result	[2]
(b)	State one use of water in industry.	
		[1]
(c)	Water is a good solvent.	
	What do you understand by the term solvent?	[4]
(d)	Water vapour in the atmosphere reacts with sulfur dioxide, SO ₂ , to produce acid rain.	•
	(i) State one source of sulfur dioxide.	
		[1]
	(ii) State two adverse effects of acid rain.	
	1	
	2	[2]
	iii) Calculate the relative molecular mass of sulfur dioxide.	
		[1]
(e)	Water from lakes and rivers can be treated to make the water safer to drink.	
	Describe two of the steps in water purification. For each of these steps, give an explanation of its purpose.	
	step 1	
	step 2	
		[4]

(f)	Water is formed when hydrogen burns in air.	

(i) State the percentage of oxygen present in the air.

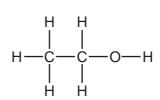

(ii) When 8 g of hydrogen is burned in excess air, 72 g of water is formed. What mass of hydrogen needs to be burnt to produce 252 g of water?

[1]


[Total: 14]

4 The structures of some organic compounds are shown below.

		Α		
н—	H -C- H	H -C- H	H -C- H	-н


В

C

D

Ε

(a) Which one of these structures represents

(i)	a polymer,	

(ii) an unsaturated hydrocarbon,

(iii) the product of the catalytic addition of steam to ethene,

ĺ	
2	

(iv) a product of the addition of aqueous bromine to ethene?

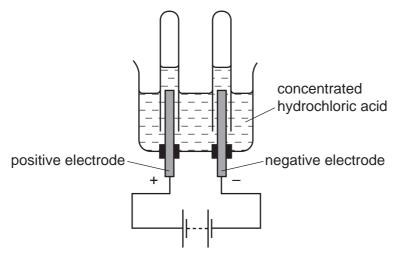
[4]

(b) (i) Balance the equation for the complete combustion of compound ${\bf A}$, ${\bf C_3H_8}$.

$$\mathrm{C_3H_8} \ + \\mathrm{O_2} \ \rightarrow \ \mathrm{3CO_2} \ + \\mathrm{H_2O}$$

[2]

(ii) State the name of **two** substances formed when compound **A** undergoes incomplete combustion.


..... [2]

(c) Complete the structure of ethanoic acid to show all atoms and bonds.

[1]

[Total: 9]

5 Concentrated hydrochloric acid can be electrolysed using the apparatus shown.

(a)	What do you	understand by the	e term <i>electrolysis</i>	s?		
						[1]
(b)		ame given to the ound the correct a	•	?		
	anion	anode	cathode	cation	electrolyte	[4]
	0		"			[1]
(C)		ne of the gas give				
						[1]
(d)	Complete the	e following sentend	ce about electroly	sis using words	from the list.	
	inert	magnesium	platinum	reactive	solid	
	Electrodes m	nade of graphite	or	are general	lly used in electi	olysis
	because they	∕ are				[2]

For
Examiner's
1100

(e) When concentrated hydrochloric acid is electrolysed, chlorine is released at the positive electrode.

(i) Draw the arrangement of the electrons in an atom of chlorine.

[1]

(ii) Draw the electronic structure of a chlorine molecule. Show only the outer electron shells.

[2]

(iii) Describe a test for chlorine.

test

result[2]

- **(f)** Hydrochloric acid reacts with the base calcium hydroxide.
 - (i) Complete the word equation for this reaction.

[2]

(ii) Hydrochloric acid also reacts with zinc. Complete the symbol equation for this reaction.

$$Zn + \dots HCl \rightarrow ZnCl_2 + \dots$$

[2]

[Total: 14]

[1]

A student observed the reaction of various metals with both cold water and steam. Her results are shown below.

metal	reaction with cold water	reaction with steam
calcium	reacts rapidly	reacts very rapidly
copper	no reaction	no reaction
magnesium	reacts very slowly	reacts rapidly
zinc	no reaction	reacts

(a) (i) Put these metals in order of their reactivity.

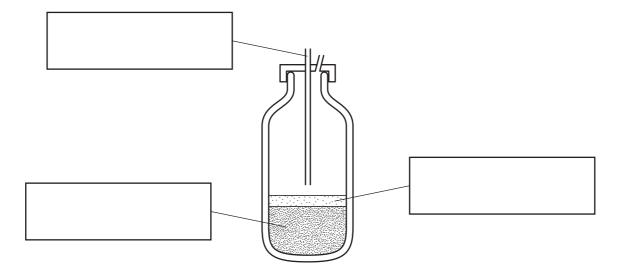
least	reactive — most reactive	
		[1]
(ii)	Iron is a metal between zinc and copper in the reactivity series. Predict the reactivity of iron with	
	cold water,	
	steam.	[2]
(b) Th	e equation for the reaction of zinc with steam is:	
	$Zn + H_2O \rightarrow ZnO + H_2$	
Wr	ite a word equation for this reaction.	

(c) State three physical properties which are characteristic of most metals.

 1.

 2.

3.[3]


For Examiner's Use

metal	melting point /°C	hardness	density /g per cm³
lithium		fairly hard	0.53
sodium	98	fairly soft	
potassium	63	soft	
rubidium	39	very soft	1.53
caesium	29	extremely soft	1.88

(i)	Estimate the melting point of lithium.	
		[1]
(ii)	How does the hardness of these metals change down the group?	
		[1]
(iii)	Estimate the density of potassium.	
		[1]
	[Total:	101

For Examiner's Use

7 The diagram shows a basic oxygen converter. This is used to convert impure iron from the blast furnace into steel. During this process, some of the impurities in the iron are converted into a slag.

- (a) Label the diagram to show each of the following:
 - where the oxygen enters;
 - the slag;
 - the molten steel.

[3]

(b) In the converter, the oxygen oxidises sulfur, carbon and phosphorus to their oxides.

(i)	Explain why sulfur dioxide and carbon dioxide are easily removed from the converter.
	[1
(ii)	Explain how calcium oxide is used to remove phosphorus(V) oxide from the converter.

(c)	Stainless ste	eel is an alloy.
-----	---------------	------------------

(i) Which **one** of the diagrams, **A**, **B**, **C** or **D**, best represents an alloy? Put a ring around the correct answer.

			dia the correct ariswe	r at a ring are
	D	С	В	Α
[1]			o of otoiploop otool	(::) Ctata ana ua
[1]			e of stainless steel.	(II) State one us
otal: 9]	[To			

8	Bromine is a red-brown lic	quid. When warmed,	it forms an orange vapour.
---	----------------------------	--------------------	----------------------------

(a)	Describe what happens to the arrangement and motion of the particles when bromine changes state from a liquid to a vapour.								
		[3]							
(b)) Bromine can be obtained from bromide ions in seawater.								
(i) The symbol equation for this reaction is:									
	$Cl_2 + 2Br^- \rightarrow 2Cl^- + Br_2$								
	Complete the word equation for this reaction.								
	+ bromide ions → +								
	(ii)	Bromine is very volatile, so it can be removed from solution by bubbling air through the solution.							
		What do you understand by the term <i>volatile</i> ?							
		[1]							
(c)	drogen reacts with bromine in the presence of a hot platinum catalyst to form hydrogen mide.								
	(i)	Define the term catalyst.							
		[1]							
	(ii)	Hydrogen bromide reduces hydrogen peroxide, $\rm H_2O_2$.							
		$2HBr + H_2O_2 \rightarrow Br_2 + 2H_2O$							
		Explain how this equation shows that hydrogen peroxide is reduced.							
		[1]							

For

Use

0620/21/M/J/11 © UCLES 2011

BLANK PAGE

DATA SHEET
The Periodic Table of the Elements

Group	0	Helium	20 Ne Neon 10	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon 54	Radon 86		175 Lu Lutetium 71	Lr Lawrendum 103
			19 Fluorine 9	35.5 C1 Chlorine	80 Br Bromine 35	127 I lodine 53	At Astatine 85		173 Yb Ytterbium 70	Nobelium
	I/ /		16 O Oxygen 8	32 S Sulfur	Selenium	128 Te Tellunium 52	Po Polonium 84		169 Tm Thulium 69	Md Mendelevium 101
			14 Nitrogen 7	31 Phosphorus 15	75 AS Arsenic	Sb Antimony 51	209 Bi Bismuth		167 Er Erbium 68	Fm Fermium
	2		12 C Carbon 6	28 Si icon	73 Ge Germanium 32	119 Sn Inn	207 Pb Lead		165 Ho Holmium 67	Es Einsteinium 99
	=		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T 1 Thallium 81		162 Dy Dysprosium 66	Cf Californium 98
		'			65 Zn Zinc 30	Cd Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	Bk Berkelium 97
					64 Cu Copper 29	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium 64	Cm Curium
					59 X Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium
					59 Co Cobalt 27	103 Rh Rhodium 45	192 I r Iridium 77		Sm Samarium 62	Pu Plutonium 94
		1 H Hydrogen			56 Fe Iron	Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Neptunium
					Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		Neodymium 60	238 U Uranium 92
					52 Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Protactinium 91
					51 V Vanadium 23	93 Nb Niobium 41	181 Ta Tantalum		140 Ce Cerium	232 Th Thorium
					48 Ti Titanium 22	91 Zr Zirconium 40	178 Hf Hafnium 72			nic mass bol nic) number
					Scandium 21	89 Y Yttrium 39	139 La Lanthanum 57 *	227 Ac Actinium	l series eries	a = relative atomic mass X = atomic symbol b = proton (atomic) number
	=		9 Be Beryllium 4	Mg Magnesium	40 Calcium 20	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series	∞ × ä
	_		7 Lithium 3	23 Na Sodium	39 K Potassium	Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71 L	Key

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.