

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Candidates at	iswer on the Question Paper.		
Candidates an	nswer on the Question Paper.		1 hour 15 minutes
Paper 2			May/June 2010
CHEMISTRY			0620/21
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

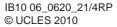
Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.


The number of marks is given in brackets [] at the end of each question or part question.

For Exam	For Examiner's Use	
1		
2		
3		
4		
5		
6		
7		
8		
Total		

This document consists of 16 printed pages.

[Total: 6]

1 Choose from the following list of gases to answer the questions.

	ammonia	carbo	n monoxide	chlorine	ethene	methane	
	nitrog	gen	nitrogen dio	xide ox	kygen	propane	
Ead	ch gas can be	used o	nce, more than	once or no	t at all.		
Wh	ich gas						
(a)	is a greenho	use gas	produced by t	he decompo	osition of ve	getation,	
							 [1]
(b)	is an alkane,	,					
							 [1]
(c)	reacts with s	sulfuric a	icid to form a s	alt,			
							 [1]
(d)	makes up ab	oout 20%	% of the air,				
							 [1]
(e)	is a halogen,	,					
							 [1]
(f)	is a hydrocai	rbon wh	ich decolourize	es aqueous	bromine?		
							 [1]

WWW.XTREMEPAPERS.NET

2

a.i.	angement.				
mo	otion				
o) Dra	aw the elec	tronic structure of a hydro	gen molecu	ıle.	
:) Th	e symbols f	for two isotopes of hydrog	en are show	vn below.	
,	,				
		1 ₁ H	1 H		
(i)	What do	you understand by the ter	m isotope?		
(ii)	Complete	the table to show the nur			
(ii)		the table to show the nur	nber of suba	atomic particl	
(ii)	Complete	the table to show the nur			
(ii)	Complete	the table to show the nur	nber of suba	atomic particl	
(ii)	Complete	isotope number of electrons number of neutrons	nber of suba	atomic particl	
(ii)	Complete	e the table to show the nur en. isotope number of electrons	nber of suba	atomic particl	
	Complete of hydrog	isotope number of electrons number of neutrons	nber of suba	atomic particl	es in these two isotop

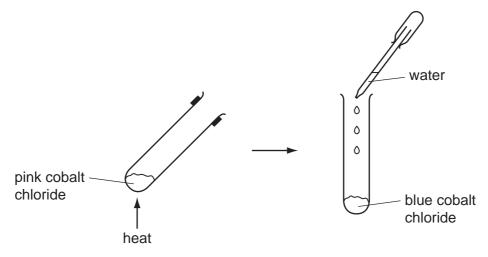
- (e) Hydrochloric acid reacts both with metals and with metal carbonates.
 - (i) A student observed the reaction of hydrochloric acid with four different metals. The student used the same concentration of hydrochloric acid and the same mass of metal in each experiment.

metal	observations
cobalt	dissolves very slowly and very few bubbles produced
iron	dissolves slowly and a few bubbles produced slowly
magnesium	dissolves very quickly and many bubbles produced very rapidly
zinc	dissolves quickly and many bubbles produced rapidly

Use the information in the table to suggest the order of reactivity of these metals.

most reactive

least reactive


	[2]
(ii)	State the names of the three products formed when hydrochloric acid reacts with calcium carbonate.
	[3]
	[Total: 14]

0620/21/M/J/10

[Total: 8]

3 Some pink cobalt chloride was heated gently in a test-tube. The cobalt chloride turned blue.

A few drops of water were then added to the blue cobalt chloride. The cobalt chloride turned pink.

(a) ((i)	State the nam	ne of this type	of reaction.			
(i	ii)			tence. Use words			[1]
		alkaline	chloride	dehydrated	hydrated	water	
		When			cobalt chloric	de is heated, it	loses
		its		of cr	rystallisation ar	nd changes coloui	. [2]
(b)	Cob	oalt is a metal.					
((i)	State two phy	sical properti	es which are chara	acteristic of me	tals.	
							[2]
(i	ii)	•		riodic Table predic llic properties.	ct two physica	I properties of col	alt in
							[2]
. ,		oalt(II) oxide is dict one chem		of cobalt(II) oxide.			
							[1]

The table shows the mass of various compounds obtained when 500 cm³ of seawater is evaporated.

compound	ions present	mass of compound/g
sodium chloride	Na⁺ and C <i>l</i> ⁻	14.0
magnesium chloride	Mg²+ and C <i>l</i> ⁻	3.0
magnesium sulfate	Mg ²⁺ and SO ₄ ²⁻	2.0
calcium sulfate	Ca ²⁺ and SO ₄ ²⁻	0.5
potassium chloride	K⁺ and C <i>l</i> ⁻	
potassium bromide		0.5
calcium carbonate	Ca ²⁺ and CO ₃ ²⁻	0.5
sodium iodide	Na⁺ and I⁻	
		total mass = 20.0

(a)	Which negative ion is present in seawater in the highest concentration?	
		[1]
(b)	Write the symbols for the two ions present in potassium bromide.	
	and	[1]
(c)	Calculate the mass of sodium chloride present in 5 g of the solid left by evaporating t seawater.	:he
		[1]
(d)	Describe a test for iodide ions.	
	test	
	result	[2]

(e)	Aqueous	chlorine	reacts	with	aqueous	sodium	iodide.
-----	---------	----------	--------	------	---------	--------	---------

(i) Complete the equation for this reaction.

$$\text{C}l_2$$
 + 2NaI $ightarrow$ + 2NaC l

[1]

(ii) What colour is the solution when the reaction is complete?

[1]		
	14	•
	 11	

(iii) An aqueous solution of iodine does not react with aqueous potassium bromide. Explain why there is no reaction.

.....[1]

(f) Calculate the relative formula mass of magnesium chloride, $MgCl_2$.

.....[1]

[Total: 9]

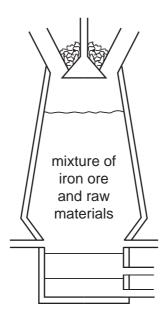
Amn	nonium sulfate is used in fertilisers.	
(a)	State the names of the three elements found in most fertilisers.	
	1	
	2	
	3	[3]
(b)	Suggest why farmers use fertilisers.	
		[2]
(c)	Ammonium sulfate is a salt which is soluble in water.	
((i) What do you understand by the term soluble?	
		[1]
(i	Which of the following methods is used to make this salt in the laboratory? Tick one box.	
	adding an acid to a metal	
	adding an acid to a metal oxide	
	by a precipitation reaction	
	by the titration of an acid with an alkali	
		[1]
	A mixture of ammonium sulfate and sodium hydroxide was warmed in a test-tube. A gas was given off which turned red litmus paper blue.	
	State the name of this gas.	
		[1]

(e)	Fer	tilisers containing ammonium salts are often slightly acidic.
	(i)	State the name of a compound which farmers add to the soil to make it less acidic.
		[1]
	(ii)	Explain why it is important for farmers to control the acidity of the soil.
		[2]
(f)	The	formula of ammonium sulfate is (NH ₄) ₂ SO ₄ .
	In tl	nis formula state:
	(i)	the number of different types of atoms present,
	(ii)	the total number of atoms present [1]
		[Total: 13]

- 6 Many metals are extracted from their ores by reduction with carbon.
 - (a) Name the main ore of iron.

[1	1	
ι.	Э.	

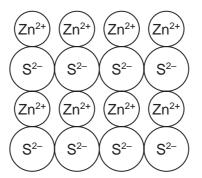
- (b) Iron is extracted from its ore in a blast furnace.
 - (i) Other than iron ore, state the names of two other raw materials used in the extraction of iron.


1.

(ii) One of the reactions taking place in the blast furnace is

FeO + C
$$\rightarrow$$
 Fe + CO

Write a word equation for this reaction.


- (iii) The diagram shows a blast furnace.
 Label the diagram to show each of the following:
 - the slag,
 - where the molten iron collects,
 - where air is blown into the furnace,
 - where the iron ore is put into the furnace.

[4]

(c) Zinc is extracted from an ore containing zinc sulfide.

Part of a zinc sulfide structure is shown below.

Suggest the simplest formula for zinc sulfide.

______[1]

[Total: 10]

7 Petroleum is a mixture of hydrocarbons. Two of the processes carried out in an oil refinery are fractional distillation of petroleum and

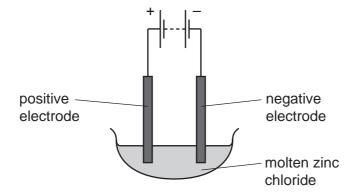
cracking of hydrocarbon fractions. (a) Which property of hydrocarbons is used to separate petroleum into fractions? Tick one box. boiling point chemical reactivity electrical conductivity melting point [1] **(b)** Match the fractions on the left with their uses on the right. The first one has been done for you. fuel for home heating bitumen fuel oil making roads kerosene waxes and polishes lubricating fraction making chemicals naphtha jet fuel [4]

For Examiner's Use

	enes.	o break down long cha	ained aikanes into sno	rter chained a	likanes and
(i)	State two con	ditions needed for crad	cking.		
	1				
	2				[2]
(ii)	hydrocarbon.	rbon, $C_{14}H_{30}$, can be		ethene and	one other
		$C_{14}H_{30} \rightarrow C_2H_2$, +		[1]
(iii)	Draw the full s	structure of ethene sho	wing all atoms and bo	nds.	
(d) Sta		the polymer formed fro			[1]
(e) Eth	nene is used to	make ethanol.			
(i)		nce is needed for this und the correct answe			
	ammonia	hydrogen	oxygen	steam	[1]
(ii)	•	cid is a catalyst in this understand by the term			
					[1]
					[Total: 12]

	8	Some substances	conduct	electricity,	others	do not
--	---	-----------------	---------	--------------	--------	--------

(a) Which three of the following conduct electricity? Tick three boxes.


aqueous sodium chloride	
ceramics	
copper	
graphite	
sodium chloride crystals	
sulfur	

[3]

(b) State the name given to a substance, such as plastic, which does not conduct electricity.

......[1]

(c) Molten zinc chloride was electrolysed using the apparatus shown below.

(i) Choose a word from the list below which describes the positive electrode. Put a ring around the correct answer.

anion anode cathode cation

[1]

State the name of the product formed during this electrolysis at (ii) the negative electrode, the positive electrode. [2] (iii) Suggest the name of a non-metal which can be used for the electrodes in this electrolysis. [Total: 8]

For Examiner's Use

The Periodic Table of the Elements **DATA SHEET**

	_						Gre	Group								
_											=	≥	>		=	0
						1 Hydrogen										4 He Helium
9 Be Beryllium											11 Boron 5	12 C Carbon 6	14 N itrogen 7	16 Oxygen	19 Fluorine 9	20 Ne Neon
Mg Magnesium											27 A t Aluminium 13	28 Si Silicon	31 Phosphorus	32 S Sulfur 16	35.5 C1 Chlorine	40 Ar Argon
Calcium	Scandium 21	48 Tritanium	51 Vanadium 23	Chromium 24	Manganese	56 Fe Iron	Cobalt Cobalt	59 K Nickel 28	64 Cu Copper	65 Zn Zinc	70 Ga Gallium 31	73 Ge Germanium 32	75 AS Arsenic	Selenium	80 Br Bromine 35	84 Kr ypton 36
88 Strontium 38	89 ≺ Yttrium 39	91 Zr n Zirconium 40	93 Niobium 41	96 Moybdenum 42	Tc Technetium 43	Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium	Sn In 50	Sb Antimony 51	128 Te Tellurium 52	127 I lodine 53	131 Xe Xenon 54
137 Ba Barium	139 La Lanthanum 57	178 Hf 	181 Ta Tantalum	184 W Tungsten 74	186 Re Rhenium	190 Os Osmium 76	192 Ir	195 Pt Platinum 78	197 Au Gold		204 T 1 Thallium	207 Pb Lead 82	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Radon 86
226 Ra Radium	AC Actinium 89															
inoic sid s	*58-71 Lanthanoid series	Ø	140 Ce Cerium 58	Pr Praseodymium 59	Neodymium	Pm Promethium 61	Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 T m Thulium	173 Yb Ytterbium 70	175 Lu Lutetium 71
<u>в × о</u>	a = relative atomicX = atomic symbolb = proton (atomic)	a = relative atomic mass X = atomic symbol b = proton (atomic) number	232 Th Thorium 90	Pa Protactinium 91	238 U Uranium	Neptunium	Pu Plutonium 94		Curium 96	BK Berkelium 97	Cf Californium 98	ES Einsteinium 99	Fm Fermium 100	Mendelevium 101	Nobelium	Lr Lawrendu 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

www.xtremepapers.net